In the presence of NaOH, is a catalyst for the high-yield rearrangement of sec-allylic alcohols to saturated ketones: J. Chem. Soc., Chem. Commun., 594 (1980). In MeOH, allyl alcohols are converted to allyl ethers. The thermodynamically more stable isomer predominates: Synth. Commun., 12, 807 (1982). In the presence of 2,2'-bipyridine, catalyzes the stereospecific epoxidation of alkenes. The configuration of the alkene is retained: Tetrahedron Lett., 25, 3187 (1984). Used catalytically, in the presence of a suitable reoxidant, such as periodate or sometimes hypochlorite, RuCl3 is a source of the powerful oxidizing agent, ruthenium(VIII) oxide, RuO4: J. Org. Chem., 46, 3936 (1981); J. Am. Chem. Soc., 103, 464 (1981). Oxidations by RuO4 include: Alkenes to carboxylic acids: J. Am. Chem. Soc., 103, 464 (1981); Org. Synth. Coll., 8, 377 (1993). In biphasic solvent systems, the reaction can also be controlled to give good yields of syn-diols: Angew. Chem. Int. Ed., 33, 2312 (1994); Chem. Eur. J., 2, 50 (1996). For an improved protocol, employing only 0.5 mol% catalyst, see: Org. Lett., 5, 3353 (2003). For oxidation of diols to carboxylic acids: J. Org. Chem., 53, 5185 (1988). ?,?-Enones to carboxylic acids: J. Org. Chem., 52, 689 (1987). Alkynes to ?-diketones: Helv. Chim. Acta, 71, 237 (1988). Ethers to esters: Tetrahedron Lett., 24, 3829 (1983). Amines to amides: Chem. Pharm. Bull., 36, 3125 (1988). Methylbenzenes to benzoic acids: J. Org. Chem., 51, 2880 (1986). For the oxidation of alkenes, alcohols and aromatic rings to carboxylic acids in a biphasic system, see: J. Org. Chem., 55, 1928 (1990). For discussion of the mechanism of oxidation of hydrocarbons and ethers, see: J. Phys. Org. Chem., 9, 310 (1996). In many of these oxidations, acetonitrile has been found to be superior to other solvents due to its effective coordination to the metal. Review: J. L. Courtney in Organic Syntheses by Oxidation with Metal Complexes, W. J. Mijs et al, Eds., Plenum Press, London (1986), p 445. For a review of RuO4-catalyzed dihydroxylation, ketohydroxylation and mono oxidation, in the synthesis of diols and ?-hydroxy ketones, see: Org. Biomol. Chem., 2, 2403 (2004).For a brief survey of uses of RuC3 in Organic synthesis, see: Synlett, 1974 (2007).